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Within the nonequilibrium Green’s-function formalism we study the time-dependent transport of charge and
spin through a ring-shaped region sequentially coupled to a weakly interacting quantum dot in the presence of
an Aharonov-Bohm flux and spin-orbit interaction. The time-dependent modulation of the spin-orbit interaction
or of the corresponding Aharonov-Casher flux, together with the modulation of the dot level, induces an
electrically pumped spin current at zero bias even in the absence of a charge current. The results beyond the
adiabatic regime show that an additional rectification current with an anomalous current-phase relation is
generated. We discuss the relevance of such term in connection with recent experiments on out-of-equilibrium
quantum dots.
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I. INTRODUCTION

In recent years the process of miniaturization of manmade
electronic circuits has permitted to reach the molecular scale
providing the opportunity of testing quantum mechanics in
nanoelectronics measurements.1 In this framework, one of
the most exciting challenges is to encode information by
means of the electron spin instead of the charge, giving rise
to the so-called spin-based electronics or spintronics.2,3 To
face the need of spin-polarizing systems acting as a source in
spintronics devices, one promising possibility is to exploit
the quantum interference effects by external electric or mag-
netic fields. In ring-shaped structures made of semiconduct-
ing materials a spin-sensitive phase, the Aharonov-Casher
phase,4 is originated by the Rashba spin-orbit interaction.5,6

Such phase combined with the Aharonov-Bohm phase7 in-
duced by a magnetic field is a useful tool to achieve spin-
polarizing devices.8,9 Another interesting phase interference
effect is originated by the periodic modulation of two out-of-
phase parameters affecting the scattering properties of a
nanostructure. Such phase effect, known in the literature as
quantum pumping, was first introduced by Thouless.10 After
the Thouless theory, a scattering approach to the adiabatic
quantum pumping was formulated by Brouwer11 who
showed that the dc current pumped by means of an adiabatic
modulation of two out-of-phase independent parameters can
be expressed in terms of the parametric derivatives of the
scattering matrix. In the adiabatic regime described by the
Brouwer formula, i.e., when the pumping frequency is much
slower than the tunneling rates, a dc current proportional to
� sin��� is originated, with � being the phase difference be-
tween the two parameters. Such theoretical prediction was
verified experimentally by Switkes et al.12 even though some
anomalies in the current-phase relation have been reported.
In particular, it has been observed a nonvanishing current at
�=0. Several anomalies observed in the experiment can be
explained by rectification of ac displacement currents as pro-
posed in Ref. 13. According to this work, the rectified cur-
rents are responsible for measurable effects which may be
dominant over the pumping currents. In order to discriminate
between rectified currents and pumping effects symmetry ar-

guments can be exploited. For instance in the noninteracting
case, the dc rectification voltage Vrect is symmetric under
reversal of the magnetic field Vrect�B�=Vrect�−B�, while the
voltage generated by a quantum pump is not. On the other
hand, it has been shown in Ref. 14 that finite frequency
effects, considered within a nonequilibrium Green’s-function
approach, can lead to current-phase relations of the form
Ic�a sin���+b cos���, where the coefficients a and b are
functions of the pumping frequency �. Differently from the
adiabatic regime where the pumped currents are odd function
of the relative phase � between the modulated parameters, in
the general nonequilibrium case an indefinite parity could be
expected.

In the following we analyze the charge and spin pumping
in a ring-shaped conductor sequentially coupled to a quan-
tum dot �see Fig. 1� and apply the nonequilibrium Green’s-
function approach to analyze the dc current from the adia-
batic to nonadiabatic regime addressing the question about
the existence of rectification terms. In the ring region shown
in Fig. 1 the electrons feel an Aharonov-Bohm phase to-
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FIG. 1. �Color online� An Aharonov-Bohm-Casher quantum
ring sequentially coupled to a quantum dot. The energy on the dot
and the Aharonov-Casher flux are modulated in time with frequency
�.
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gether with a time-varying Aharonov-Casher phase. The last
is related to the Rashba spin-orbit interaction which is tun-
able by means of a gate voltage.15 An additional time-
dependent modulation of the dot energy level is also consid-
ered. If no voltage bias is present between the two external
leads, the electron current is activated by absorption and
emission of quantized photon energy. Thus, in the following
the charge and spin-pumped currents are studied as a side
effect of boson-assisted tunneling.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and derive the general expression for
the nonequilibrium Green’s function and respective self-
energies for the noninteracting and weakly interacting case.
In Sec. III, we employ a one-photon-approximation and ob-
tain a compact expression for the dc current pumped in the
left lead. In Sec. IV, we present the results of our analysis as
a function of the phase and interaction effects. Finally, in
Sec. V some conclusions are given.

II. MODEL AND NONEQUILIBRIUM CURRENT

The Hamiltonian of an Aharonov-Bohm-Casher ring se-
quentially coupled to an interacting quantum dot in the pres-
ence of time-varying parameters can be written, in the local
spin frame, as follows:16

H�t� = Hc + �
�

��t�d�
†d� + Un↑n↓ + �

k�

�2u cos����t��d�
†ck�l

+ wck�r
† d�� + H.c., �1�

where Hc=�k�,�=�l,r��k
�ck��

† ck�� is the free-electron Hamil-
tonian describing the left/right �l /r� leads kept at the same
chemical potential �. The second and third term represent
the dot Hamiltonian consisting of the electron-electron inter-
action term Un↑n↓ �n�=d�

†d�� and of the time-dependent dot
energy level ��t�=�0+�� sin��t+��, with � being the fre-
quency of the modulation. The last term in Hamiltonian de-
scribes the tunneling between the left lead and the dot,
u cos����, and the right lead and the dot through a tunnel
barrier, w. The transmission coefficients u and w, which in
general may be spin and momentum dependent, are consid-
ered here constant for simplicity, i.e., u	u�k=kF� and w
	w�k=kF�, with kF being the Fermi momentum.

The electrons coming from the left lead acquire the time-
dependent spin-sensitive phase ���t�=	��AB+��R�t��
��= 
1�, where �AB is the Aharonov-Bohm phase, while
�R is the Aharonov-Casher phase produced by the modula-
tion of the Rashba spin-orbit interaction on the ring
�R�t�=�R

0 +�R
� sin��t�.9 The Hamiltonian given in Eq. �1�

can be rewritten by means of a plane-wave expansion in the
following form:

H�t� = H0 + �� sin��t + ���
�

d�
†d�

+ �
k�

4u�cos���
0�A��R

�,t� − � sin���
0�B��R

�,t��d�
†ck�l

+ H.c., �2�

where the static part H0 of the Hamiltonian is the same as in

Eq. �1� with: ��t�→�0, u→uJ0�	�R
��, �R�t�→�R

0 , and
��

0 =	��AB+��R
0�, while the functions A��R

� , t� and
B��R

� , t� are given by17

A��R
�,t� = �

n=1

�

J2n�	�R
��cos�2n�t� , �3�

B��R
�,t� = �

n=1

�

J2n−1�	�R
��sin��2n − 1��t� , �4�

where Jn�x� are the Bessel functions of first kind. In absence
of an external voltage, the quantum transport of particles
through the structure is only due to absorption or emission of
energy quanta �� associated to the external time-dependent
fields.

To calculate the pumped current we employ the Keldysh
Green’s-functions technique as formulated in Ref. 18. The
current in the left lead is given by Il�t�=−e d

dt 
Nl�
=− ie

� 
�H ,Nl�� �Nl=�k�ck�l
† ck�l�. It can be rewritten in terms

of the retarded and lesser Green’s functions G���
r/
 �t , t1� and of

the advanced and lesser self-energies �l,���
a/
 �t1 , t� of the quan-

tum dot according to the following expression:

Il�t� = �
�

Il
��t� , �5�

Il
��t� =

2e

�
�
��

Re�
 dt1G���
r �t,t1��l,���


 �t1,t�

+ G���

 �t,t1��l,���

a �t1,t�� . �6�

For a time-dependent problem the retarded, advanced and
lesser �r ,a ,
� Green’s functions and respective self-energies
depend explicitly on two time variables instead of one. Thus,
employing the two time Fourier transform19 the current �Eq.
�5�� can be rewritten as

Il
��t� =

2e

�
�
��

Re�
 dE1dE2dE3

�2	�3 ei�E3−E1�t

� �G���
r �E1,E2��l,���


 �E2,E3�

+ G���

 �E1,E2��l,���

a �E2,E3��� , �7�

where the lesser Green’s function G
�E1 ,E2� of the dot is
given by the Keldysh equation,

G
�E1,E2� =
 d�1d�2

�2	�2 Gr�E1,�1��
��1,�2�Ga��2,E2� ,

�8�

and the following relation between the retarded and ad-
vanced quantities can be used: �a�E1 ,E2�= ��r�E2 ,E1��†,
where �=G or �. In order to compute the current the knowl-
edge of Gr, �r, and �
 is required. Below we are going to
calculate them for the noninteracting dot and the weakly in-
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teracting one. In both cases, the wide-band limit �WBL� will
be employed for simplicity.

A. Noninteracting case (U=0)

In the U=0 case the expression of the self-energies
can be obtained exactly. By calling w=�u ���R�,
the retarded and lesser self-energies can be expressed in
terms of the corresponding Green’s functions of the leads,

namely, �gk�
r �t , t���sp=−i�sp��t− t��e−i�k

��t−t�� and �gk�

 �t , t���sp

= i�spf��k
��e−i�k

��t−t��, by the following relations:

�sp
r,
�t1,t2� = �

k,��r

�2�u�2�gkr
r,
�t1,t2��sp

+ �
k,��l

4�u�2cos��s�t1��cos��p�t2���gkl
r,
�t1,t2��sp,

�9�

where s , p are spin indices �↑ ,↓� and f��k� is the Fermi func-
tion, while �k

l =�k
r =�k in absence of voltage bias. In WBL

limit and making the substitution �k,�→�d������, we get

�sp
r �t1,t2� = − i�sp��t1 − t2��0��2/2 + 2 cos2��s�t1��� ,

�sp

�t1,t2� 	 i�spf�t1 − t2��0��2 + 4 cos2��s�t1��� , �10�

where we introduced the quantities �0=2	��u�2 and
f�t1− t2�=� d�

2	 f���e−i��t1−t2�. By defining the left and right
transition rates �s

l�t1� /2=2�0 cos2��s�t1�� and �s
r�t1� /2

=�0�2 /2, the retarded self-energy can be written as
�sp

r �t1 , t2�=−i�sp��t1− t2���s
l�t1� /2+�s

r�t1� /2� and thus the re-
tarded Green’s function of the quantum dot takes the follow-
ing form:20

Gsp
r �t,t�� = gsp

r �t,t��exp�−
1

2



t�

t

dt1��s
l�t1� + �s

r�t1��� ,

gsp
r �t,t�� = − i�sp��t − t��exp�− i


t�

t

dt1��t1�� . �11�

It can be computed exactly after having performed the fol-
lowing plane-wave expansion of the retarded self-energy:

�sp
r �t1,t2� = − i�sp��t1 − t2��0�1 + �2/2 + J0�2	�R

��cos�2�s
0�

+ 2 cos�2�s
0�A�2�R

�,t1�

− 2s sin�2�s
0�B�2�R

�,t1�� , �12�

whose Fourier transform is given by

�sp
r �E1,E2�

= − 	�sp�i��E1 − E2�Q1
s + iQ2

s

� �
�=
1,n=1

�

J2n�2	�R
����E1 − E2 + 2n��� − Q3

s

� �
�=
1,n=1

�

�J2n−1�2	�R
����E1 − E2 + �2n − 1����� .

�13�

An analogous plane-wave expansion can be performed for
the lesser self-energy �sp


�t1 , t2�, whose Fourier transform is
the following:

�sp

�E1,E2�

= 2	i�sp� f�E1���E1 − E2�Q1
s + �

�=
1,n=1

�

Q2
sJ2n�2	�R

��

�f�E1 + 2n�����E1 − E2 + 2n���

+ �
�=
1,n=1

�

iQ3
s�J2n−1�2	�R

��f�E1 + �2n − 1����

���E1 − E2 + �2n − 1����� , �14�

where Q j
s are given by

Q1
s = 2�0��2/2 + 1 + J0�2	�R

��cos�2�s
0�� ,

Q2
s = 2�0 cos�2�s

0� ,

Q3
s = 2�0s sin�2�s

0� . �15�

The substitution of Eq. �14� and of Gr�E1 ,E2� in Eq. �8�
permits to determine the G
�E1 ,E2�.

The knowledge of the retarded and lesser Green’s func-
tion enables us to calculate the current generated by the
pumping procedure in the form of a trigonometric series, i.e.,
Il

��t�= I0
�+�n=1

� �cn
� cos�n�t�+sn

� sin�n�t��, allowing us to rec-
ognize the dc component of the current.

The self-energy plane-wave expansion above �Eq. �12��
applies to the adiabatic as well as to the antiadiabatic regime.
When limiting the analysis to the adiabatic regime only, an
expansion to the linear order in the time derivative or an
average time approximation as in Ref. 21 can be employed.

B. Weakly interacting case (UÉ0)

The weakly interacting limit �U	0� can be studied by
means of a self-consistent Hartree-Fock theory which is
known to give suitable results when the Coulomb interaction
U is small �i.e., U��0�.22,23 In this framework, the energy of
the electrons on the dot is modified by a spin-dependent
term related to the occupation number of the electron of op-
posite spin and thus the spin-dependent energy becomes
���t�=��t�+U
n�̄�t�� ��̄=−��. The occupation number

n��t�� is calculated self-consistently by means of the rela-
tion i
n��t��=G��


 �t , t�. Furthermore, the retarded Green’s
function of the dot is modified by the interaction according
to the expression,
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Gsp
r �t,t�� = Gsp

r �t,t��exp�− iU

t�

t

dt1
ns̄�t1��� , �16�

where Gsp
r �t , t�� represents the retarded Green’s function de-

rived in the noninteracting case. In order to determine the
interacting Green’s function, we can write 
ns̄�t1�� as a trigo-
nometric series of sin�n�t� and cos�n�t� with unknown co-
efficients calculated in a self-consistent way, as explained
below.

III. SINGLE-PHOTON APPROXIMATION

Hereon we focus on the weak pumping limit and consider
only single-photon processes, i.e., involving emission or ab-
sorption of a single energy quantum ��. The weak pumping
limit �i.e., the case in which a pure sin��� behavior of the
current is expected� is very important in experiments where
the higher harmonics contribution seem to be negligible even
though other anomalies occur. Such anomalies in the current-
phase relation will be discussed here later.

A. Noninteracting case (U=0)

Within the single-photon approximation the self-energies
�Eqs. �13� and �14�� can be approximated as

�sp
r �E1,E2� 	 − 	�sp�i��E1 − E2�Q1

s + Q3
sJ1�2	�R

��

� �
�=
1

���E1 − E2 − ���� ,

�sp

�E1,E2� 	 2	�sp�if�E1�Q1

s − Q3
sJ1�2	�R

��

� �
�=
1

�f�E1 + �����E1 − E2 + ���� .

�17�

The approximation is valid for small values of 2	�R
� so that

the inequality J1�2	�R
���Jn�2	�R

��, n�1, is verified. Us-
ing the above approximated form of Eq. �17� the retarded
Green’s function of the quantum dot can be rewritten as fol-
lows:

Gsp
r�1��t,t�� = − i�sp��t − t��exp�− i��0 − iQ1

s /2��t − t���

�exp�− i��1
s


t�

t

dt1 sin��t1�

+ �2

t�

t

dt1 cos��t1��� , �18�

where we introduced the coefficients,

�1
s = �� cos��� + iJ1�2	�R

��Q3
s ,

�2 = �� sin��� , �19�

and the upper index �1� stands for the single-photon approxi-
mation. Making a further expansion of the retarded Green’s
function for small �� /� leads to the result,

Gsp
r�1��t,t�� � − i�sp��t − t��exp�− i��0 − iQ1

s /2��t − t���

���0
s + �1

sC�t,t�� + �2
sS�t,t��� , �20�

where C�t , t��=cos��t��−cos��t� and S�t , t��=sin��t��
−sin��t�, while the coefficients � j

s have been defined as fol-
lows:

�0
s = J0��2

�
�2

J0�Re��1
s�

�
�2

I0� Im��1
s�

�
�2

,

�1
s = 2J0��2

�
�2

I0� Im��1
s�

�
�J0�Re��1

s�
�

�
� �J0�Re��1

s�
�

�I1� Im��1
s�

�
� − iJ1�Re��1

s�
�

�
� I0� Im��1

s�
�

�� ,

�2
s = 2iI0� Im��1

s�
�

�2

J0�Re��1
s�

�
�2

J1��2

�
�J0��2

�
� ,

�21�

where In�x� �n=0,1� represents the modified Bessel function
of first kind and order n. The above result can be conve-
niently rewritten in terms of the two-time Fourier transform,
and thus we have

Gsp
r�1��E1,E2� = 2	�sp��0

s��E1 − E2�
Ds�E1�

+ �
�=
1

��R�
s ��E1 − E2 + ���

Ds�E1��Ds�E1� + ��� � , �22�

where we defined R�
s = ��1

s − i��2
s� /2 and Ds�E1�

=E1−�0+ iQ1
s /2. The knowledge of the retarded Green’s

function allows us to write the lesser Green’s function by
means of the Keldysh equation in this way;

Gss

�1��E1,E2� = 2	iQ1

sFs
0�E1,E2�

+ 2	Q3
sJ1�2	�R

�� �
�=
1

�Fs
−��E1,E2� ,

�23�

where we defined the following integral function:

F�
��E1,E2� = �

s

 d�

�2	�2G�s
r�1��E1,� − ���

� f���G�s
r�1���E2,�� . �24�

The above function, disregarding terms quadratic in J1�x�
and I1�x� and additional terms describing higher-order pro-
cesses �roughly cubic in �(Ds�E1�)−1�, can be written in the
simple form,

ROMEO, CITRO, AND MARINARO PHYSICAL REVIEW B 78, 245309 �2008�

245309-4



Fs
��E1,E2� =

f�E1 + �����0
s�2��E1 − E2 + ���

Ds�E1��Ds�E1� + ����
. �25�

Thus, the dc current generated by the time-varying param-
eters has the following final expression:


Il
s�1��t�� =

eQ̃1
sQ1

s�0
s�1 − �0

s�
h


 f�E�dE

�Ds�E��2
+

2eQ3
sJ1�2	�R

��
h

� Re� �
�=
1


 �R�
s f�E�dE

Ds�E��Ds�E� + ���� . �26�

Here Q̃1
s is a coefficient obtained setting �=0 in Q1

s �for the
left lead�. The current �Eq. �26�� contains terms proportional
to ��

2 and ��R
��2 that can be interpreted as rectification terms

and terms proportional to ���R
� which contain information

on the nonadiabatic pumping process, as will be clear below.

B. Weakly interacting case (UÉ0)

To perform the analysis in the weakly interacting case, we
consider U /� as a small quantity, with U being of the same
order of �� and �R

�. This implies that terms proportional to
U� are negligible �i.e., U���2�. Within the Hartree-Fock
theory we need to determine the energy of the quantum dot
���t�=�0+Un�̄�t� with n�̄�t��
n�̄�t��. By using the single-
photon approximation, we write the occupation number as a
trigonometric series,

n��t� = a�
�0� + a�

�1� sin��t� + a�
�2� cos��t� , �27�

where the unknown coefficients a�
�i� have to be determined

self-consistently. In the interacting case the retarded Green’s
function takes the following form:

Gsp
r�1��t,t�� = − i�sp��t − t��exp�− i��0 + Uas̄

�0� − iQ1
s /2�

��t − t���exp�− i���1
s + Uas̄

�1��

t�

t

dt1 sin��t1�

+ ��2 + Uas̄
�2��


t�

t

dt1 cos��t1��� . �28�

Note that since the coefficients as
�i� appear as a factor of the

interaction U, we have to calculate them only up to the zero-
order approximation in U and �. From the lesser Green’s
function obtained by Eq. �28�, we can write the occupation
number in the following form:

n��t� 	
��0

��2

2	
�Q1

� − 2Q3
�J1�2	�R

��sin��t��
 f�E�dE

�D0
s�E��2

,

�29�

where D0
��E�=E−�0+ iQ1

s /2. By comparing the above ex-
pression with the G��


�1��t , t� obtained by using Eq. �28� one
gets the following set of self-consistency equations:

a�
�0� =

Q1
�

2	

 f�E�dE

�D0
��E��2

,

a�
�1� = − 2

Q3
�

Q1
�J1�2	�R

��a�
�0�,

a�
�2� = 0. �30�

Once the above equations are solved, the dc current can be
written as in Eq. �26� with the following interaction-induced
shift:
�0→�0+Ua�̄

�0� and �1
s →�1

s +Ua�̄
�1�.

C. Spin and charge currents

To obtain an analytical expression of the dc current
pumped in the left lead in the presence of a weak interaction
and zero temperature, we expand R�

s in �Eq. �26�� for
��

�
�1 and 2	�R

��1. In this limit the coefficients R�
s reduce to

R�
s 	

	�R
�Q3

s

2�
+ �

�� sin���
2�

− i
��� cos��� + Uas̄

�1��

2�
,

�31�

while the quantity �0
s�1− ��0

s�� can be written as follows:

�0
s�1 − �0

s� 	
1

2
� ��

2

�2 −
�	�R

�Q3
s�2

�2 + 2
as̄

�1�U�� cos���

�2 �
+ O�1/�4� . �32�

Plugging these expressions in Eq. �26� and performing the
integral over the frequency, we can write the dc current in the
single-photon approximation �in units of 2�0e /�� as follows:


i�
�1�� =

q̃1
�a�

�0�

2�2 ���
2 − �2	�R

�q3
��2 + 2a�̄

�1�U�� cos����

+ �− 	�q3
��R

��2��� − �0 + U�a�
�0� − a�̄

�0��

�D�����2 �
+ q3

� ���R
�

2�D�����2�� sin���
�D�����2

��� − �0 − Ua�̄
�0��2 − �q1

��2�

+ 2q1
� cos���� + O��3� , �33�

where the energies are measured in units of �0, while we
defined qi

��Qi
� / �2�0�. The dimensionless charge and spin

currents, i.e., Ic and Is, can be defined as Ic=��i� and
Is=���i�. The main feature of the expression for the dc
current is the presence of a nonsinusoidal current-phase re-
lation already in weak pumping. Indeed, contrarily to the
adiabatic case characterized by a current-phase relation with
odd parity �i.e., Ic�−��=−Ic���� in the time-dependent case
an indefinite parity could be expected. This behavior is
mainly related to finite frequency effects as well as to inter-
action effects. Equation �33� represents the main result of
this work.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to make a comparison with the available experi-
mental data, we set �0�10�eV.24 This quantity is related to
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the dwell time �d by the following relation E�=h /�d�2�0,
and it is relevant to define the various transport regimes at
varying frequency �. Indeed, for value of ��d�1 one deals
with the adiabatic regime, while in the opposite limit, i.e.,
��d�1, the nonadiabatic regime is approached. For typical
experimental frequencies ranging from 10 MHz up to 20
GHz, ��d varies from �10−2 up to the order of 10 and thus
the megahertz range of frequency can be safely considered as
adiabatic. The dimensionless frequency � which appears in
Eq. �33� is defined as ���� /�0=��d /	. In this way a fre-
quency of 25 MHz corresponds to �=0.01, 100 MHz corre-
sponds to �=0.04, and 1 GHz corresponds to �=0.4. In the
following we study the behavior of charge and spin currents
in the range of frequency �� �0.1,0.5�, thus our analysis is
valid from adiabatic up to the moderate nonadiabatic limit.
We also set the chemical potential � as the zero of energy
and consider the zero-temperature limit. From the analysis of
the current i�, we notice the presence of two classes of terms
contributing to the currents. �1� Terms proportional to ��

2 or
��R

��2 and �2� terms proportional to �R
���. The first type of

terms are nonadiabatic in nature. The second class of terms
contains a term proportional to �, which can be recognized
as the quantum pumping contribution, and a frequency-
independent term proportional to cos��� which can be inter-
preted as a rectification contribution. Such term is respon-
sible for the nonsinusoidal behavior that leads to an
anomalous current-phase relation as observed in Ref. 24
�page 3, first column, line 2�. Very interestingly, the interac-
tion effects also lead to a cosine term which is proportional
to a�̄

�1�U�� cos��� /�2�U���R
� cos��� /�2 �see Eq. �33�, first

line�. Such a term produces a deviation from the sinusoidal
behavior also for small values of the energy U. Finally, the
current i� vanishes when the amplitude of the modulation ��

and �R
� go simultaneously to zero.

In Fig. 2 the charge �dashed-dotted line� and spin �full
line� currents, namely, Ic and Is, as a function of the phase
difference � between the time-varying parameters are re-
ported for the following choice of parameters: �=0.05,
�AB=0.49, �R

0 =0.02, �R
�=0.01, �0=0, ��=0.025, �=0.1,

and U=0. A sinusoidal-like behavior is observed even
though the charge pumped for �=0 is different from zero
and of the order of 10−3. This is a fingerprint of the anoma-
lous current-phase relation, as discussed above. To put in
evidence the dependence on the interaction U, we present in
Fig. 3 the charge current computed at �=0 �dashed line� and

�=	 /2 �full line� as a function of U taking the remaining
parameters as in Fig. 2. Smaller values of the interaction
favor deviation from the sinusoidal behavior.

Below we concentrate on the role of spin-orbit interaction
and choose the Aharonov-Bohm flux close to half-integer
values in unit of the flux quantum �0=h /e where the charge
current is activated by photon-assisted tunneling �PAT�.
Away from the above values of the Aharonov-Bohm flux the
currents present an oscillating behavior as a function of the
applied magnetic flux �AB similar to the one already dis-
cussed in a previous work.25

In Fig. 4 we plot Ic �dashed-dotted line� and Is �full line�
as a function of the static Aharonov-Casher phase �R

0 for
pumping frequency �=0.2, �=0.3, and �=0.4 �from top to
bottom� and by setting the remaining parameters as follows:
�=0.05, �AB=0.49, �R

�=0.01, �0=−0.025, ��=0.05,
�=5	 /4, and U=0. By increasing the pumping frequency
from �=0.2 �500 MHz� up to 0.4 �1 GHz� zeros of the
charge currents start to appear and thus it is possible to ob-
tain pure spin currents in the nonadiabatic regime. It is worth
mentioning that currents of amplitude 10−2 in dimensionless
units correspond to �50 pA, thus the pure spin current we
find is sizable.

To analyze the role of a weak Coulomb interaction, we
plot in the upper panel of Fig. 5 the charge and spin currents
for the same parameters as in Fig. 4 ��=0.3� and by setting
U=0.02. A qualitatively different behavior of the charge cur-
rent as a function of the Aharonov-Casher flux is observed.
In particular, when the interaction energy U is of the same
order of magnitude of the pumping frequency �, additional
zeros of the charge current appear and this is a very appeal-
ing situation for spintronics devices. For instance, looking at
Fig. 5 �upper panel�, one observes a pure spin current close
to �R

0 =0.015 and 0.03.
In the lower panel of Fig. 5 we plot charge and spin cur-

rents as done in the upper panel and by setting the Aharonov-
Bohm flux to �AB=0.52. In this case, a characteristic oscil-
lating behavior of the currents controlled by using a
magnetic flux is visible.

Another interesting phenomenon is the asymmetric con-
tribution to the current of the photon absorption and emission
as a function of the dot level �0, as also reported in Ref. 26.
When the dot level lies above the Fermi level ��0�0�, an
electron on the dot can jump in the left lead by emitting a

0 1 2 3 4 5 6
�

�0.075
�0.05
�0.025

0
0.025

0.05
0.075

I c
,s

FIG. 2. �Color online� Currents of charge �dashed-dotted line�
and spin �full line� as a function of � obtained for the following
choice of parameters: �=0.05, �AB=0.49, �R

0 =0.02, �R
�=0.01,

�0=0, ��=0.025, �=0.1, and U=0.

0 0.005 0.01 0.015 0.02
U

0

0.02

0.04

0.06

0.08

I c
�0
�,

I c
�Π
�2
�

FIG. 3. �Color online� Currents of charge computed at: �=0;
Ic��=0� �dashed line� and �=	 /2; Ic��=	 /2� �full line�, as a func-
tion of U obtained for the following choice of parameters:
�=0.05, �AB=0.49, �R

0 =0.02, �R
�=0.01, �0=0, ��=0.025, and

�=0.1.
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photon. For �0
0, an electron on the dot can reach the left
lead only by means of the absorption of a photon since no
voltage bias or temperature gradient is present. Because of
the interference between these two-photon sources, boson-
assisted tunneling onto the dot gets suppressed while tunnel-
ing out of the quantum dot is enhanced. The asymmetric
behavior of the dc current as a function of the dot level is
shown in Fig. 6.

In the upper panel, we plot the charge current Ic as a
function of the dot level �0 and by setting the remaining
parameters as �=0.05, �AB=0.49, �R

0 =0.05, �R
�=0.01,

�=	 /2, U=0, and ��=0.05. As can be seen, when the fre-
quency � is increased from 0.1 �dashed line� up to 0.5 �full
line� a strong peak is formed at Fermi energy and the asym-
metry of the current with respect to the �0=0 becomes more
evident. It is worth to mention that since the relative phase �
is 	 /2, all the terms in the current proportional to cos��� are
suppressed, while the pumping term takes its maximum

value. In the lower panel we set ��=0, while the remaining
parameters are fixed as in the upper panel. In this case the
device works as a single-parameter pump associated to the
Aharonov-Casher flux and the current is proportional to
��R

��2. A comparison between the upper and the lower panel
shows that the pumping mechanism is the dominant one at
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0
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I c,
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s
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(c)

FIG. 4. �Color online� Charge �dashed-dotted line� and spin
�full line� currents as a function of �R

0 obtained for the following
choice of parameters: �=0.05, �AB=0.49, �R

�=0.01, �0=−0.025,
��=0.05, �=5	 /4, and U=0. The upper panel is obtained for
�=0.2, the middle panel for �=0.3, and the lower panel for
�=0.4.
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FIG. 5. �Color online� Charge �dashed-dotted line� and spin �full
line� currents as a function of �R

0 obtained for the following choice
of parameters: �=0.05, �R

�=0.01, �0=−0.025, ��=0.05, �=5	 /4,
�=0.3, U=0.02, �AB=0.49 in the upper panel, and �AB=0.52 in
the lower panel.
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FIG. 6. �Color online� Charge current Ic as a function of �0

obtained for the following choice of parameters: �=0.05,
�AB=0.49, �R

0 =0.05, �R
�=0.01, �=	 /2, U=0, ��=0.05 for upper

panel, and ��=0 for lower panel. Each panel contains curves ob-
tained for �=0.1 �dashed line�, �=0.25 �dashed-dotted line�, and
�=0.5 �full line�.
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the Fermi energy. Furthermore, we have verified that a small
interaction does not alter too much the picture given so far.

The same analysis performed in Fig. 6 can be repeated by
setting �=0 to include the cos��� contribution. In the upper
panel of Fig. 7 we plot the current obtained for ��=0.05,
while in the lower panel this parameter is set to zero �single-
parameter pump�. By comparing the results, one observes an
enhancement of the absolute value of the high-frequency cur-
rents in the case of double-parameter modulation �upper
panel� and close to the Fermi energy.

From the analysis above one observes that within the con-
sidered parameters region, the dominant mechanism for the
generation of the dc current is the finite frequency quantum
pumping. Indeed, close to the Fermi energy such currents
take values which range from �70 pA up to �190 pA �see

the upper panel of Fig. 6�, while in the other cases the gen-
erated currents present values of about 10% of those induced
by the pumping process. Thus, for �AB close to half-integer
values the quantum pumping induces the main contribution
to the current, while away from this flux region the rectifi-
cation currents are dominant.

V. CONCLUSIONS

We studied the time-dependent charge and spin transport
�pumping� in a Aharonov-Bohm-Casher ring sequentially
coupled to a weakly interacting quantum dot by using a non-
equilibrium Green’s-function approach. By varying a consid-
erable number of parameters, we showed that the proposed
device can work as a spin current generator and analyzed all
its characteristics, including rectification effects. When the
energy level ��t� on the dot and the Aharonov-Casher flux
are periodically modulated in time with a frequency �, a dc
current is observed in the leads. Contrarily to the adiabatic
case, the current-phase relation presents two additional co-
sine terms. The first one comes from the interaction on the
dot, while the second can be interpreted as a rectification
effect, as already noted in Ref. 24. We also showed that
Coulomb interaction effects can enhance the rectification ef-
fects. As a function of the spin-orbit interaction and close to
the nonadiabatic regime, the results of the charge current
show the appearance of additional zeros at varying the
Aharonov-Casher flux. Thus, the finite frequency regime
close to 750 MHz ��=0.3� is suitable to obtain pure spin
currents useful in spintronics. Such currents are of the order
of magnitude of �100 pA as detected in the experiments on
quantum dots.27 Finally, the analysis as a function of the dot
level showed a characteristic asymmetric behavior and the
comparison between the single-parameter and double-
parameters pumps showed a considerable increase in the dc
current in the second case. The proposed device can be easily
fabricated on a GaAs/AlGaAs two-dimensional electron gas
using electron-beam �e-beam� lithography to define the ring
and dot region modifying, for instance, the system studied in
Ref. 27.
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